
Udupa et al., International Journal on Emerging Technologies 10(2): 221-225(2019) 221

International Journal on Emerging Technologies 10(2): 221-225(2019)

 ISSN No. (Print) : 0975-8364
 ISSN No. (Online) : 2249-3255

An Integrated Methodology for Testing Source Code by Using Multi
Constraint Reduction, Test Suite Prioritization and Prioritized Parallelization

Pradeep Udupa
1
 and A. Rijuvana Begum

2

1
Research Scholar, Department of Computer Science and Engineering, Prist University Thanjavur Vallam, India.

2
Associate Professor, Department of Electronics and Communication Engineering,

Prist University Thanjavur Vallam, India.

 (Corresponding author: Pradeep Udupa)
(Received 25 April 2019, Revised 12 June 2019 Accepted 02 July 2019)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Software Testing is the method of assessing a system or its components. It is used to execute
a system in order to rectify any breach, bugs, or missing requirements in conflicting to the actual
requirements and excluding the delusion. It requires validating an attribute to test that whether it produces
anticipated and demanded outputs. So testing software plays major role in software development, but as no
of test cases increases time, cost, effort, faults, complexity increases, so we use proposed technique in
which we used apfd, test suit reduction, prioritization. Also in test case ordering to extend performance and
an algorithm is built to optimize the overall testing coherence and to lessen the implementation time by
diminishing number of test cases, performing prioritization and bug detection. In further, prioritized
parallelization is done to prolong performance.

Keywords: Test suit depletion, Prioritization, Parallelization, Fault detection, Optimization.

I. INTRODUCTION

A. Software Testing
Software Testing is the technique of validating, verifying
and correcting the error. It is used to ensure the
software quality and completeness, here the goal is to
minimize total test runs [1], because as the number of
test case increases it takes immense time to test,
therefore here we first try to minimize test cases then
prioritize them and finally optimize them.

 B. Black Box Test
It is the process of checking and testing that a software
program or application or product Meets the business
and technical requirements that are guided it’s design
and development, here whether software behaves
properly or not is invisible to the testing team as in [7].

C. White Box Test
In this case process of checking whether incorporated
function works properly or not, implementation details
are appropriate or not, whether software behaves
properly or not are invisible to the testing team. Test
cases are used to define required and expected output
and it is used for testing against user requirements and
against specific criteria's to be satisfied.

D. Check Lists
Check lists is a condition or set of conditions for
evaluating a particular feature of a software product to
determine its compliance with the business
requirements. A test case has pre-condition, input
values and expected outcome, it is used to detect the
correct behaviour or operations and characteristics of an
application and an expected outcome or an expected
result, it is used for rectifying whether we can able to

obtain our demanded output as per our requirements
which is stated at the beginning as expected result.

E. Path Validation
It is Used to test every possible path, It can be used
when number of paths are more and testing more
number of paths are complex and time consuming, it will
be helpful in checking different criteria's to be satisfied
by the given program, it includes identifying different
possible path, and testing different possible path.

F. Control Flow Testing
It includes testing each possible path, it can be used
when number of paths are supplemental and testing
alternative paths are composite and time consuming, it
will be helpful in checking alternative criteria's to be
contented by the given program it includes identifying
alternative possible path.

G. Independent Paths
It is a separate path in the program which is used to test
specific condition and different benchmark to be
satisfied by the program and engender test cases for
each and every derived unique path by making
particular path to pass the required condition.

H. Why to Attenuate Comprehensive Test Suits?

1. Extensive test cases leads more convolution as in
 [9].
2. Larger the test cases more will be the probable
number of errors.
3. Error tracing is to be executed.
4. Vast no of testers are demanded.
5. It will take immense time. It will expand The Overall
outlay as in [2].

e
t

Udupa et al., International Journal on Emerging Technologies 10(2): 221-225(2019) 222

I. Proposed Algorithm (How)
In proposed research we attempt to lessen number of
test cases by discovering (how) min, max, and constant
values in the whole test cases though locating no of test
paths, here we use following steps to lesson no of test
cases.
1. Spot criteria’s from begin to end nodes. A condition
 can be (>, >=, <, <=, ==! =)
2. Locate the variables with peak and smallest values in
 the path, then the large variable is given high value and
small variable is given low value.
3. Dwindle time required to run test cases
4. To prioritize the test cases.
5. To contract total effort
6. To eschew critical software failure
7. To rectify maximum no of errors.
8. To discover critical errors as early as
 Possible.

II. LITERATURE REVIEW

There were numerous papers which investigated the
role of reducing test cases. Here are the several test
case diminishing techniques that are explored
previously.

A. Curtailment Based Test Input Procreation
DeMillo and Offutt introduced procedure for test input
procreation that uses path inspecting, symbolic
verification, and lessen number of test cases based on
criteria [12].

B. Dynamic Domain Reduction (Ddr)
Offutt et al., have invented get split algorithm which
cleaves domain to dwindle overall domain range and
shorten test runs and overall time needed. It has
accomplished vague depletion in test cases but it is less
efficient and large time swallowing and is comparatively
more extortionate method [13].

C. Ping-Pong Technique
This approach selects the small number of test cases by
ordering differently, and it uses heuristic process which
wont ensure best output, but it can give better outcome
in given time by diverging the set of values of goal state
and set of states of attained values and it will assure
range sheath, but it is absorbs more time and it will be
exorbitant technique and more effort needed [5].

D. Test Case Reduction Using Multi Constraint
Reduction Technique & Fault Detection (proposed).
Numerous techniques are entitled previously in literature
but in our technique we used test case diminishing
approach, prioritization, fault detection and
parallelization where low, high, constant variable in all
path are examined by analyzing each and every
individual path, here unique paths are examined by
using cyclomatic complexity and later more than one
test case are executed in parallel and prioritized fashion
which has increased percentage of depletion in terms
execution time and number of test cases by using
proposed method we perform test case depletion,
prioritization and then finally test suits will be executed
so that it can lesson debugging effort as in [6], and then
we prioritize test cases based on test case ordering,
here rectification of fault apfd calculations are
performed, then rate of fault detection, percentage of

fault detection, risk detection analysis are performed,
here several formulas are incorporated and test case
ranking is assigned for different test cases then it will be
executed based on test case rankings, finally collation
among different prioritized test cases is done based on
fault detection rate to demonstrate that our technique
has optimum performance over other existing
techniques, ultimately we run test cases based on
priority, this influences to expose maximum number of
faults and execute test cases with severe test cases first
and helps in nullifying software from failure.

Table 1: Summary of review comparison.

Author Approach Advantage Disadvantage

DeMilli, & Offutt
1991 [12]

Constraint
based
testing

It uses
control- flow
analysis,
symbolic
evaluation
and reduces
no of test
cases based
on criteria

More no of test
cases Time
consuming More
expensive less
efficient More
effort no
parallelization

Offutt et al., 1999
[13]

D.D.R. Achieved
more
depletion in
test cases

More test cases
compare to
constraint bases
comparatively
more Time
consuming 3.more
expensive 4.more
effort
5.no parallelization

Srikanth et al.
2005 [11]

Prioritization
techniques
no order,
reverse
order

Attempt to
detect
possible no
of errors and
contribute in
performance

Less efficient
compare to
proposed
technique in terms
of performance

III. EXISTING METHODOLOGY

Ddr Technique
Presume that given domain is i1(0..30),j1(0..50),
k1(0..40) here following steps followed 1. Detecting all
criteria’s from begin to end
2. Examine split point value for given domain and for all
 variable fulfilling criteria.
3. Then as per split vale we separate into two intervals.
i1=0 to 15 and 16 to 30 i2 into 10 to 30 and 31 to 50 &
final interval by using splitting is i1 0 to 10 and 11 to 30
i2 31 to 50 i3 is 10 So total test
cases=31*1+31*20=651.

IV. PROPOSED METHODOLOGY

In this segment first we minimize test cases by our given
algorithm then we prioritize test cases by assigning
rankings for test cases then we discover APFD value
which will manifest that proposed technique is better
than prevailing technique, then we parallelize our test
cases to lessen time and cost involved. Here first we
discover number of test paths then from each path we
detect min, max, and constant values and will derive our
diminished test cases by using steps given below then
further execute them in parallel fashion. Assume that
the path 1-2-4-8 is adopted and the inceptive domains
taken are i1(0..30),j1(0..50),k1(0..40).
We follow following steps.
1. Identify criteria’s from beginning to end nodes. I1 < j1,

Udupa et al., International Journal on Emerging Technologies 10(2): 221-225(2019) 223

 j1> = k1 then
2. Identify min and max values in the path and allot to
 min and max variable.
3. Determine fixed values. ‘k1’ fixed value obtained on
 node2 is allotted to variable k1.
4. Determine fixed values. ‘k1’ fixed value obtained on
 node2 is allotted to variable k1,then make use of
 obtained range to derive reduced test cases for all
 unique paths as given in Fig. 1.

Table 2: Generated Domains for Different
Variables.

Test table
Variable

I 1
Variable

J1
Variable

K1
Test cases/

path

0 to 30 50 10 T1 /p1
0 to 9 10 to 50 10 T2/p2

10 to 30 0 to 30 20 T3/p3
30 0 to 50 20 T4/p4

V. RESULT EVALUATION

In this section we discriminate proposed methodology
with the existing method Get Split with respect to
produced total checklists, total depletion in test cases,
comprehensive bugging time and fault detection rate in
proposed technique for path1 we need only 31*1*1=31
is test cases.

Fig. 1. Control Flow Graph.

Table 3: Number of faults exposed and time
required for each Test Cases.

Test
Cases/Errors

T'1 T'2 T'3 T'4 No rev prop

Fault1'/F1' *' 4' 1' 1'
Fault2' *' 4' 1' 1'
Fault3' *' *' *' 1' 4' 1'
Fault4' *' *' *' 2' 3'. 1'
Fault5' *' 2' 3' 4'
Fau.lt6' *' 3' 2' 3'
No of faults 1 2 3 4
time 1.5 5 7 9
severity 4 6 8 10 16 14 11

Here adopted domain is i1(0..30),j1(0..50),k1(0..40)
here F1 is fault value inputted less than minimum range
in which values for i1=-1 and F2 is fault value entered
higher than maximum range and in which value for
i1=31,and F3 is fault value inputted less than minimum
range where value for j1=-4 and F4->fault value entered
higher than maximum range and value for j1=51 where
F5->fault value inputted less than minimum range and
value for k1=-5 where F6->fault value given is higher
than maximum range and value for k1=41, then for
faults and severity given which is mentioned in Table 3.
We then calculate rate of fault, percentage of fault and
risk detection analysis, by using the formula given
below. then values of rft, apfd and rda are added.
RFT=Nj/TIMEj*10 as in Table 4.
PFD=NJ/total no of faults*10 RDA=NJ*SJ/TJ
TCR=RFD+PFD+RDA as in Table 5.

Table 4: Test cases With Procured Fault Rate, Pfd,
Rda and Test Case Rank.

Test cases RFT PFD RDA TCR
T1 10 3.33 4 17.33
T2 6.66 3.33 4 13.99
T3 10 5 8 23
T4 10 6.66 10 26.66

 Table 5. Ranking Values For Test Cases.

Table 6: Assessment of Proposed Prioritization With

Different Techniques.

Table 7: Calculated Apfd Values.

Prioritization
Techniques

APFD%

NO ORDER 46
REVERCE ORDER 54

PROPOSED ORDER 58

Application 1: to assess continuous improvement of student,
here if students first internal mark is greater than 2nd internal
and 3rd internal 25 marks/credits
Added if 2nd internal is greater than first internal and 3rd
internal 50 marks added and if 3rd internal is greater than first
internal and 2nd internal 75 marks added as in Table 9.
Application 2: promoting banking/finance business providing
added credit points for increments in deposits/loan above 5k or
certain limit settled by company and can enchased as cash
(Table 10).
Application 3: promoting business by providing credit
Increments for increments in purchase amount for purchase
amount above 500 rupees as in Table 11.

Test Cases TCR=RFD+PFD+RDA
T1 17.33
T2 13.99
T3 23
T4 26.66

No Order Reverse Order Proposed Order
T1 T4 T4
T2 T3 T3
T3 T2 T1
T4 T1 T2

t=i1+j1+k1+75

t=i1+j1+k1+25

1

k1=10 3
2

j1<k1 j1<k1

4

t=i1+j1+k1 6
7

5

t=i1+j1+k1+50

8

k1=20

i1<j1

j1>=k1
j1>=k1

i1>=j1

Udupa et al., International Journal on Emerging Technologies 10(2): 221-225(2019) 224

Table 8: Application Based Research Comparison of Proposed Method (Multi Constraint Based Reduction)
with Existing Method.

Appname Domain Reduction technique Total test cases Execution time in
seconds

Student Continuous
Improvement

(0,30) (0,50) (0,40) Test Case With No Reduction 64821 324105

 Test Case With Criteria
Reduction

24149 12074.5

 Multi Constraint Based
Reduction

31 15.5

Banking Business (0,31) (32,55)
(0,35)

Test Case With No Reduction 64512 32256

 Test Case With Criteria
Reduction

27648 13824

 Multi Constraint Based
Reduction

32 16

Business Promotion (0,25) (0,60) (0,35) Test Case With No Reduction 57096 28548
 Test Case With Criteria

Reduction
32760 16380

 Multi Constraint Based
Reduction

26 13

Table 9: Student Continuous Assessment.

Table 10: Banking Business.

 Acc no Custname Bank Deposit 1 Bank
Deposit 2

Bank
Deposit 3

Result Credits

134101501 Raj 18 15 35 50 credit points Added 50
134101502 Ravi 19 35 16 75 credit points Added 75
134101503 Latha 23 18 15 25 credit points Added 25

Table 11: Business Promotion.

Custname Mobno Pur1 Amt Pur2 Amt Pur3 Amt Result Credits

rana 9188476376 14 20 40 3rd purchase is greatest, so 25
marks added

75

Raju 8618109452 19 35 16 2nd purchase is greatest, so 50
marks added

50

ram 9946027073 23 18 15 First purchase is greatest, so 25
marks added

25

Apfd=1-(tf1+tf2+…tfm)/m*n+1/2*n for no order apfd=1-(4+4+1+2+2+3)/6*4+1/2*4=1-.666+.125=46%,for reverse order apfd=1-
(1+1+4+3+3+2)/6*4+1/2*4=1-.5833+.125=54%

Fig. 2. Comparison between Different Prioritized Techniques no, Reverse and Proposed Order.

For proposed order we first calculate apfd=1-
(1+1+1+1+4+4)/ 6*4+1/2*4=1-.4583+.125=58%,then we
parallelize generated test cases by analyzing Table 2,
now variable i used in 3 paths so range

=total number of interval/3, and variable j used in 4
paths so range=total number of interval/4.
Since k is constant we not divide k, so range of I spitted
into 3 parts i1) 0…..10 i2)11…..20 i3)21….30 . Similarly

Reg. no. Name Internal 1 Internal 2 Internal 3 Result Total

124101 Raj 20 30 25 50 Marks Added 125
124102 Ravi 15 20 40 75 Marks Added 150
124103 Ram 35 25 10 25 Marks Added 95

Apfd

Prioritized techniques

Udupa et al., International Journal on Emerging Technologies 10(2): 221-225(2019) 225

 range of j spitted into 4 parts j1) 10…..20 j2)21…..30
 j3)31….40 j4)41…50. Now when we execute them in
parallel fashion we have total number of test
 cases=[31*51*41]*4=259284 and reduced test case
 for path1=31, but using existing technique test
cases=651, Reduced overall test cases=
31*1*1+10*41*1+21*31*1+1*51*1]=[31+410+651+51]=1
14, as in Table 2, then we assigning each test case
constant .5 second and we observe that without
parallelization execution time required for reduced test
cases is 1143*.5=571.5.
So total number of test cases without test case
reduction = 259284 and execution time=129642, but for
sequential execution reduced test cases =1143, and
execution time=571.5 and in case of PRIORITIZED
parallel execution test cases=1143 and execution
time=142.875, where processor having equal capacity
and fault detection rate of proposed method is also
more, and time required to detect all required faults will
be considerably low because test cases are exposed in
prioritized order as mentioned in Table 6.

VI. CONCLUSION

Every algorithm has its own dominance as well as
hazard, ddr works on discrete domain and split points,
ping pong and other prevailing approach results in
immense number of test cases, compilation, time,
vague effort and cost. But proposed technique has
better performance by shrinking number of test cases,
prioritizing them and betray vast number of bugs by
designating test case rankings, apfd calculation and
then deriving prioritized test suits, lessening test cases
as in Fig. 2, and our proposed techniques is compared
with many other existing techniques by application
oriented research based comparison along with the
evaluated result as in Table 8, ultimately we allocated
the test case rankings to accomplish optimized
performance and ultimately we execute parallelized and
prioritized test cases to diminish overall running time,
total budget required to perform testing.

VIII. LIMITATION

Methodology proposed by us inquire each and every
path to prosecute serially to observe the control flow
and each and every path is to be investigated to find out
all possible curb, and need to examine all the possible
criteria's related to the variables and analyze
association between variables, so it will take
supplementary time and memory to obtain the result, it
is effective when the variables are there with constant
and predetermined values and it works well for parallel
execution where we have preserved memory and
enlarge comprehensive speed of execution.

FUTURE SCOPE

To build a methodology which will consider
requirements of user, and reduces number of test cases

based on requirements of the user along with
considering priority of the user requirements.

ACKNOWLEDGEMENT

First of all, i am grateful to the god for the good health
and wellbeing that were necessary to complete this
work. Next i would like to thank to my parents, guide,
wife and all who helped me directly and indirectly to
complete my research work.

Conflict of Interest: Nil

REFERENCES

[1]. Wang, R., Qu, B., & Lu, Y. (2015). Empirical study of
the effects of different profiles on regression test case
reduction. IET Software, 9(2), 29-38.
[2]. Boehm, B., & Huang, L.G. (2003). Value-based
software engineering: A case study. Computer, 36(3), 33-
41.
[3]. Arnicane, V. (2009). Complexity of equivalence class
and boundary value testing methods. International Journal
of Computer Science and Information Technology, 751(3),
80-101.
[4]. Sawant, A.A., Bari, P.H., & Chawan, P.M. (2012).
Software testing techniques and strategies. International
Journal of Engineering Research and Applications
(IJERA), 2(3), 980-986.
[5]. Jeng, B. and Weyuker, E.J. (1994). A simplified
domain-testing strategy. ACM Transactions on Software
Engineering and Methodology (TOSEM), 3(3), 254-270.
[6]. Gyimóthy, T., Beszédes, Á., & Forgács, I. (1999). An
efficient relevant slicing method for debugging. In Software
Engineering—ESEC/FSE’99 (pp. 303-321). Springer,
Berlin, Heidelberg.
[7]. Biswas, S., Mall, R., Satpathy, M., & Sukumaran, S.
(2011). Regression test selection techniques: A
survey. Informatica, 35(3).
[8]. Saifan, A.A., Alsukhni, E., Alawneh, H., & Sbaih, A.A.
(2016). Test case reduction using data mining
technique. International Journal of Software Innovation
(IJSI), 4(4), 56-70.
[9]. Assi, R.A., Masri, W., & Zaraket, F. (2016). UCov: a
user‐defined coverage criterion for test case intent
verification. Software Testing, Verification and
Reliability, 26(6), 460-491.
[10]. Kumar, A. (2016). Evaluation of software testing
techniques through software testability index. AKGEC, Vol.
3, pp. 342-349.
[11]. Srikanth, H., Williams, L., & Osborne, J. (2005).
System test case prioritization of new and regression test
cases. In 2005 International Symposium on Empirical
Software Engineering, 2005. 64-73.
[12]. DeMilli, R.A., & Offutt, A.J. (1991). Constraint-based
automatic test data generation. IEEE Transactions on
Software Engineering, 17(9), 900-910.
[13]. Offutt, A.J., Jin, Z., & Pan, J. (1999). The dynamic
domain reduction procedure for test data
generation. Software: Practice and Experience, 29(2), 167-
193.

How to cite this article: Udupa, P. and Begum, A.R. (2019). An Integrated Methodology for Testing Source Code
by Using Multi Constraint Reduction, Test Suite Prioritization and Prioritized Parallelization. International Journal of
Emerging Technologies, 10(2): 221–225.

